
Data Analysis
with Excel®

An Introduction
for Physical Scientists

Les Kirkup
University of Technology, Sydney



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40West 20th Street, NewYork, NY 10011-4211, USA
477Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, TheWaterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© L. Kirkup 2002

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2002
Reprinted 2003

Printed in the United Kingdom at the University Press, Cambridge

TypefaceUtopia 9.25/13.5pt. SystemQuarkXPress® [SE]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Kirkup, Les.
Data analysis with Excel : an introduction for physical scientists / Les Kirkup.
p. cm.

Includes bibliographical references and index.
ISBN 0-521-79337-8 – ISBN 0-521-79737-3 (pb.)
1. Research–Statistical methods–Data processing. 2. Electronic spreadsheets.

3. Microsoft Excel forWindows. I. Title.

Q180.55.S7 K57 2002
001.4�22�0285–dc21 2001037408

ISBN 0 521 79337 8 hardback
ISBN 0 521 79737 3 paperback



Contents

Preface xv

1 Introduction to scientific data analysis 1
1.1 Introduction 1

1.2 Scientific experimentation 2

1.2.1 Aim of an experiment 3

1.2.2 Experimental design 4

1.3 Units and standards 6

1.3.1 Units 7

1.3.2 Standards 10

1.3.3 Prefixes and scientific notation 10

1.3.4 Significant figures 12

1.4 Picturing experimental data 14

1.4.1 Histograms 14

1.4.2 Relationships and the x–y graph 17

1.4.3 Logarithmic scales 20

1.5 Key numbers summarise experimental data 21

1.5.1 The mean and the median 22

1.5.2 Variance and standard deviation 24

1.6 Population and sample 26

1.6.1 Population parameters 27

1.6.2 True value and population mean 27

1.6.3 Sample statistics 28

1.6.4 Which standard deviation do we use? 30

1.6.5 Approximating s 31

1.7 Experimental error 32

1.7.1 Random error 33

vii



1.7.2 Systematic error 33

1.7.3 Repeatability and reproducibility 34

1.8 Modern tools of data analysis – the computer based

spreadsheet 34

1.9 Review 35

Problems 36

2 Excel® and data analysis 39
2.1 Introduction 39

2.2 What is a spreadsheet? 40

2.3 Introduction to Excel® 41

2.3.1 Starting with Excel® 42

2.3.2 Worksheets andWorkbooks 43

2.3.3 Entering and saving data 44

2.3.4 Rounding, range and the display of numbers 45

2.3.5 Entering formulae 47

2.3.6 Cell references and naming cells 50

2.3.7 Operator precedence and spreadsheet readability 53

2.3.8 Verification and troubleshooting 55

2.3.9 Auditing tools 58

2.4 Built in mathematical functions 59

2.4.1 Trigonometrical functions 61

2.5 Built in statistical functions 62

2.5.1 SUM(), MAX() andMIN() 62

2.5.2 AVERAGE(), MEDIAN() andMODE() 64

2.5.3 Other useful functions 65

2.6 Presentation options 66

2.7 Charts in Excel® 68

2.7.1 The x–y graph 68

2.7.2 Plotting multiple sets of data on an x–y graph 73

2.8 Data analysis tools 75

2.8.1 Histograms 76

2.8.2 Descriptive statistics 79

2.9 Review 80

Problems 81

3 Data distributions I 85
3.1 Introduction 85

3.2 Probability 86

3.2.1 Rules of probability 87

3.3 Probability distributions 89

3.3.1 Limits in probability calculations 93

viii CONTENTS



3.4 Distributions of real data 94

3.5 The normal distribution 97

3.5.1 Excel®’s NORMDIST() function 99

3.5.2 The standard normal distribution 101

3.5.3 Excel®’s NORMSDIST() function 104

3.5.4 x̄and s as approximations to � and � 106

3.6 Confidence intervals and confidence limits 107

3.6.1 The 68% and 95% confidence intervals 109

3.6.2 Excel®’s NORMINV() function 112

3.6.3 Excel®’s NORMSINV() function 113

3.7 Distribution of sample means 114

3.8 The central limit theorem 116

3.8.1 Standard error of the sample mean 117

3.8.1.1 Approximating �x̄ 120

3.8.2 Excel®’s CONFIDENCE() function 121

3.9 The t distribution 122

3.9.1 Excel®’s TDIST() and TINV() functions 125

3.10 The lognormal distribution 126

3.11 Assessing the normality of data 128

3.11.1 The normal quantile plot 128

3.12 Population mean and continuous distributions 131

3.13 Population mean and expectation value 132

3.14 Review 133

Problems 133

4 Data distributions II 138
4.1 Introduction 138

4.2 The binomial distribution 138

4.2.1 Calculation of probabilities using the binomial

distribution 140

4.2.2 Probability of a success, p 142

4.2.3 Excel®’s BINOMDIST() function 143

4.2.4 Mean and standard deviation of binomially distributed

data 144

4.2.5 Normal distribution as an approximation to the binomial

distribution 145

4.3 The Poisson distribution 149

4.3.1 Applications of the Poisson distribution 151

4.3.2 Standard deviation of the Poisson distribution 152

4.3.3 Excel®’s POISSON() function 154

4.3.4 Normal distribution as an approximation to the Poisson

distribution 156

CONTENTS ix



4.4 Review 157

Problems 158

5 Measurement, error and uncertainty 161
5.1 Introduction 161

5.2 The process of measurement 162

5.3 True value, error and uncertainty 165

5.3.1 Calculation of uncertainty, u 167

5.4 Precision and accuracy 170

5.5 Random and systematic errors 171

5.6 Random errors 172

5.6.1 Common sources of error 172

5.7 Absolute, fractional and percentage uncertainties 174

5.7.1 Combining uncertainties caused by random errors 176

5.7.2 Equations containing a single variable 176

5.7.3 Equations containing more than one variable 178

5.7.4 Most probable uncertainty 180

5.7.5 Review of combining uncertainties 183

5.8 Coping with extremes in data variability 183

5.8.1 Outliers 183

5.8.2 Chauvenet’s criterion 184

5.8.3 Dealing with values that show no variability 187

5.9 Uncertainty due to systematic errors 190

5.9.1 Calibration errors and specifications 191

5.9.2 Offset and gain errors 192

5.9.3 Loading errors 195

5.9.4 Dynamic effects 197

5.9.5 Zero order system 198

5.9.6 First order system 198

5.10 Combining uncertainties caused by systematic errors 201

5.11 Combining uncertainties due to random and systematic errors 202

5.11.1 Type A and Type B categorisation of uncertainties 205

5.12 Weighted mean 205

5.12.1 Standard error in the weighted mean 207

5.12.2 Should means be combined? 208

5.13 Review 208

Problems 209

6 Least squares I 213
6.1 Introduction 213

6.2 The equation of a straight line 214

6.2.1 The ‘best’ straight line through x–y data 215

x CONTENTS



6.2.2 Unweighted least squares 217

6.2.3 Trendline in Excel® 222

6.2.4 Uncertainty in a and b 223

6.2.5 Least squares, intermediate calculations and significant

figures 226

6.2.6 Confidence intervals for � and � 226

6.3 Excel®’s LINEST() function 228

6.4 Using the line of best fit 230

6.4.1 Comparing a ‘physical’ equation to y�a�bx 231

6.4.1.1Uncertaintiesinparameterswhicharefunctionsofaandb 232

6.4.2 Estimating y for a given x 233

6.4.2.1Uncertainty in prediction of y at a particular value of x 236

6.4.3 Estimating x for a given y 236

6.5 Fitting a straight line to data when random errors are confined to

the x quantity 239

6.6 Linear correlation coefficient, r 242

6.6.1 Calculating r using Excel® 246

6.6.2 Is the value of r significant? 247

6.7 Residuals 249

6.7.1 Standardised residuals 252

6.8 Data rejection 254

6.9 Transforming data for least squares analysis 257

6.9.1 Consequences of data transformation 262

6.10 Weighted least squares 264

6.10.1 Weighted uncertainty in a and b 267

6.10.2 Weighted standard deviation, �w 268

6.10.3 Weighted least squares and Excel® 272

6.11 Review 272

Problems 273

7 Least squares II 280
7.1 Introduction 280

7.2 Extending linear least squares 281

7.3 Formulating equations to solve for parameter estimates 283

7.4 Matrices and Excel® 285

7.4.1 The MINVERSE() function 285

7.4.2 The MMULT() function 286

7.4.3 Fitting the polynomial y�a�bx�cx2 to data 288

7.5 Multiple least squares 290

7.6 Standard errors in parameter estimates 293

7.6.1 Confidence intervals for parameters 296

7.7 Weighting the fit 297

CONTENTS xi



7.8 Coefficients of multiple correlation andmultiple determination 299

7.9 The LINEST() function for multiple least squares 300

7.10 Choosing equations to fit to data 302

7.10.1 Comparing equations fitted to data 303

7.11 Non-linear least squares 306

7.12 Review 309

Problems 309

8 Tests of significance 315
8.1 Introduction 315

8.2 Confidence levels and significance testing 316

8.3 Hypothesis testing 320

8.3.1 Distribution of the test statistic, z 322

8.3.2 Using Excel® to compare sample mean and hypothesised

population mean 325

8.3.3 One tailed and two tailed tests of significance 327

8.3.4 Type I and type II errors 328

8.4 Comparing x̄with �0 when sample sizes are small 329

8.5 Significance testing for least squares parameters 331

8.6 Comparison of the means of two samples 334

8.6.1 Excel®’s TTEST() 337

8.7 t test for paired samples 339

8.7.1 Excel®’s TTEST() for paired samples 341

8.8 Comparing variances using the F test 342

8.8.1 The F distribution 342

8.8.2 The F test 344

8.8.3 Excel®’s FINV() function 346

8.8.4 Robustness of the F test 346

8.9 Comparing expected and observed frequencies using the �2 test 347

8.9.1 The �2 distribution 347

8.9.2 The �2 test 349

8.9.3 Is the fit too good? 350

8.9.4 Degrees of freedom in �2 test 351

8.9.5 Excel®’s CHIINV() function 354

8.10 Analysis of variance 354

8.10.1 Principle of ANOVA 355

8.10.2 Example of ANOVA calculation 357

8.11 Review 359

Problems 360

xii CONTENTS



9 Data Analysis tools in Excel® and the Analysis ToolPak 364
9.1 Introduction 364

9.2 Activating the Data Analysis tools 365

9.2.1 General features 366

9.3 Anova: Single Factor 367

9.4 Correlation 368

9.5 F test Two-Sample for Variances 369

9.6 RandomNumber Generation 371

9.7 Regression 373

9.7.1 Advanced linear least squares using Excel®’s Regression

tool 375

9.8 t tests 376

9.9 Other tools 378

9.9.1 Anova: Two-FactorWith Replication and Anova: Two-Factor

Without Replication 378

9.9.2 Covariance 378

9.9.3 Exponential Smoothing 379

9.9.4 Fourier analysis 379

9.9.5 Moving average 379

9.9.6 Rank and percentile 380

9.9.7 Sampling 380

9.10 Review 380

Appendix 1 Statistical tables 381
Appendix 2 Propagation of uncertainties 390
Appendix 3 Least squares and the principle of maximum

likelihood 392
A3.1 Mean and weighted mean 392

A3.2 Best estimates of slope and intercept 394

A3.3 The line of best fit passes through x̄,ȳ 396
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Chapter 1
Introduction to scientific data analysis

1.1 Introduction

‘The principle of science, the definition almost, is the following: The

test of all knowledge is experiment. Experiment is the sole judge of

scientific “truth”’.

So wrote Richard Feynman, famous scientist and Nobel prize winner, noted for his
contributions to physics.1

It is possible that when Feynman wrote these words he had in mind elab-

orate experiments devised to reveal the ‘secrets of the universe’, such as

those involving the creation of new particles during high energy collisions

in particle accelerators. However, experimentation encompasses an enor-

mous range of more humble (but extremely important) activities such as

testing the temperature of a baby’s bath water by immersing an elbow into

thewater, or pressing onabicycle tyre to establishwhether it has gone ‘flat’.

The absence of numericalmeasures of quantitiesmost distinguishes these

experiments from those normally performed by scientists.

Many factors directly or indirectly influence the fidelity of data gath-

ered during an experiment such as the quality of the experimental design,

experimenter competence, instrument limitations and time available to

perform the experiment. Appreciating and, where possible, accounting for

such factors are key tasks that must be carried out by an experimenter.

After every care has been taken to acquire the best data possible, it is time

to apply techniques of data analysis to extract themost from the data. The

1

1 See Feynman, Leighton and Sands (1963).



process of extraction requires qualitative as well as quantitative methods

of analysis. The first steps require consideration be given to how data may

be summarised numerically and graphically and this is the main focus of

this chapter.2 Someof the ideas touchedupon in this chapter, such as those

relating to error and uncertainty, will be revisited in more detail in later

chapters.

1.2 Scientific experimentation

To find out something about the world, we experiment. A child does this

naturally, with no training or scientific apparatus. Through a potent com-

bination of curiosity and trial and error, a child quickly creates a viable

model of the ‘way things work’. This allows the consequences of a particu-

lar action tobe anticipated. Curiosity plays an equally important role in the

professional life of a scientist whomay wish to know:

• the amount of contaminant in a pharmaceutical;

• the thickness of the ozone layer in the atmosphere;

• the surface temperature of a distant star;

• the stresses experienced by the wings of an aircraft;

• the blood pressure of a person;

• the frequency of electrical signals generated within the human brain.

In particular, scientists look for relationships between quantities. For

example, a scientist may wish to establish how the amount of energy radi-

ated from a body each second depends on the temperature of that body. In

formulating the problem, designing and executing the experiment and

analysing the results, the intention may be to extend the domain of appli-

cability of an established theory, or topresent strong evidenceof thebreak-

downof that theory.Where results obtained conflictwith accepted ideas or

theories, a key goal is to provide an alternative and better explanation of

the results. Before ‘going public’ with a new and perhaps controversial

explanation, the scientist needs to be confident in the data gathered and

themethods used to analyse those data. This requires that experiments be

well designed. In addition, good experimental design helps anticipate

difficulties that may occur during the execution of the experiment and

encourages the efficient use of resources.

Successful experimentation is often a combination of good ideas,

good planning, perseverance and hard work. Though it is possible to dis-

2 1 INTRODUCTION TO SCIENTIFIC DATA ANALYSIS
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cover something interesting and new ‘by accident’, it is usual for science to

progress by small steps. The insights gained by researchers (both experi-

mentalists and theorists) combine to provide answers and explanations to

some questions, and in the process create new questions that need to be

addressed. In fact, even if somethingnew is foundby chance, it is likely that

the discovery will remain a curiosity until a serious scientific investigation

is carried out to determine if the discovery or effect is real or illusory.While

scientists are excitedbynew ideas, a healthy amount of scepticism remains

until the ideas have been subjected to serious and sustained scrutiny by

others.

Though it is possible to enter a laboratorywith only a vague notion of

how to carry out a scientific investigation, there is muchmerit in planning

ahead as this promotes the efficient use of resources, as well as revealing

whether the investigation is feasible or overambitious.

1.2.1 Aim of an experiment

An experiment needs a focus,more usually termed an ‘aim’, which is some-

thing the experimenter returns to during the design and analysis phases of

the experiment. Essentially the aim embodies a question which can be

expressed as ‘what arewe trying tofindout byperforming the experiment?’

Expressing the aimclearly and concisely at the outset is important, as

it is reasonable to query as the experiment progresses whether the steps

taken are succeeding in addressing the aim, orwhether the experiment has

deviated ‘off track’. Heading off on a tangent from themain aim is not nec-

essarily a bad thing. After all, if you observe an interesting and unexpected

effect during the course of an experiment, it would bequite natural towant

to know more, as rigidly pursuing the original aim might cause you to

bypass an important discovery. Nevertheless, it is likely that if a new effect

has been observed, this effect deserves its own separate and carefully

planned experiment.

Implicit in the aim of the experiment is an idea or hypothesis that the

experimenter wishes to promote or test, or an important question that

requires clarification. Examples of questions that might form the basis of

an experiment include:

• Is a new spectroscopic technique better able to detect impurities in

silicon than existing techniques?

• Does heating a glass substrate during vacuum deposition of a metal

improve the quality of the thin films deposited onto the substrate?

1.2 SCIENTIFIC EXPERIMENTATION 3



• To what extent does a reflective coating on windows reduce the heat

transfer into a motor vehicle?

• In what way does the cooling efficiency of a thermoelectric cooler

depend on the amount of electrical current supplied to the cooler?

Such questions can be restated explicitly as aims of a scientific investiga-

tion. It is possible to express those aims in anumber of different, but essen-

tially equivalent, ways. For example:

(a) The aim of the experiment is to determine the change in heat transfer

to a motor vehicle when a reflective coating is applied to the windows

of that vehicle.

(b) The aim of the experiment is to test the hypothesis that a reflective

coating applied to the windows of a motor vehicle reduces the amount

of heat transferred into that vehicle.

Most physical scientists and engineers would recognise (a) as a familiar

way in which an aim is expressed in their disciplines. By contrast, the

explicit inclusion of a hypothesis to be tested, as stated in (b), is often

found in studies in the biological, medical and behavioural sciences. The

difference in the way the aim is expressed is largely due to the conventions

adoptedby eachdiscipline, as all have a commongoal of advancing under-

standing and knowledge through experimentation and observation.

1.2.2 Experimental design

Deciding the aim or purpose of an experiment ‘up front’ is important, as

precious resources (including the time of the experimenter) are to be

devoted to the experiment. Experimenting is such an absorbing activity

that it is possible for the aims of an experiment to become too ambitious.

For example, the aim of an experimentmight be to determine the effect on

the thermal properties of a ceramic when several types of atoms are sub-

stituted for (say) atoms of calcium in the ceramic. If a month is available

for the study, careful consideration must be given to the number of

samples of ceramic that can be prepared and tested and whether a more

restricted aim, perhaps concentrating on the substitution of just one type

of atom, might not be more appropriate.

Once the aim of an experiment is decided, a plan of how that aim

might be achieved is begun. Matters that must be considered include:

• What quantities are to be measured during the experiment?

• Over what ranges should the controllable quantities be measured?

4 1 INTRODUCTION TO SCIENTIFIC DATA ANALYSIS



• What are likely to be the dominant sources of error?

• What equipment is needed and what is its availability?

• In what ways are the data to be analysed?

• Does the experimenter need to become skilled at new techniques (say,

how to operate an electron microscope, or perform advanced data

analysis) in order to complete the experiment?

• Does new apparatus need to be designed/constructed/acquired or

does existing equipment require modification?

• Is there merit in developing a computer based acquisition system to

gather the data?

• Howmuch time is available to carry out the experiment?

• Are the instruments to be used performing within their specifications?

A particularly important aspect of experimentation is the identification of

influences that can affect any result obtained through experiment or

observation. Such influences are regarded as sources of ‘experimental

error’ and we will have cause to consider these in this text. In the physical

sciences, many of the experimental variables that would affect a result are

easily identifiable and some are under the control of the experimenter.

Identifying sources that would adversely influence the outcomes of an

experiment may lead to ways in which the influence might be minimised.

For example, the quality of ametal filmdeposited onto a glass slidemay be

dependent upon the temperature of the slide during the deposition

process. By improving the temperature control of the system, so that the

variability of the temperature of the slide is reduced to (say) less than 5°C,

the quality of the films may be enhanced.

Despite the existence of techniques that allow us to draw out much

from experimental data, a good experimenter does not rely on data analy-

sis to ‘make up’ for data of dubious worth. If large scatter is observed in

data, a sensible option is to investigate whether improved experimental

technique can reduce the scatter. For example, time spent constructing

electromagnetic shielding for a sensitive electronic circuit in an experi-

ment requiring themeasurement of extremely small voltages can improve

the quality of the data dramatically and is to be much preferred to the

application of ‘advanced’ data analysis techniques which attempt to com-

pensate for shortcomings in the data.

An essential feature of experiments in thephysical sciences is that the

measurement process yields numerical values for quantities such as tem-

perature, pH, strain, pressure and voltage. These numerical values (often

referred to as experimental data) may be algebraically manipulated,

graphed, compared with theoretical predictions or related to values

1.2 SCIENTIFIC EXPERIMENTATION 5



obtained by other experimenters who have performed similar experi-

ments.

1.3 Units and standards

Whenever a value is recorded in a table or plotted on a graph, the unit of

measurement must be stated, as numbers by themselves have little

meaning. To encompass all quantities that we might measure during an

experiment, we need units that are:

• comprehensive,

• clearly defined,

• internationally accepted,

• easy to use.

Reliable and accurate standards based on the definition of a unit must be

available so that instruments designed tomeasure specific quantities may

be compared with those standards. Without agreement between experi-

menters in, say, Australia and the United Kingdom as to what constitutes a

metre or a second, a comparison of values obtained by each experimenter

would be impossible.

A variety of instruments may be employed to measure quantities in

the physical sciences, ranging from a ‘low tech.’ manometer to determine

pressure in a chamber to a state of the art HPLC3 to accurately determine

the concentration of contaminant in a pharmaceutical.Whatever the par-

ticular details of a scientific investigation, we generally attach much

importance to the ‘numbers’ that emerge from an experiment as theymay

provide support for a new theory of the origin of the universe, assist in

monitoring damage to the earth’s atmosphere or help save a life. Referring

to the outcome of a measurement as a ‘number’ is rather vague and mis-

leading. Through experiment we obtain values. A value is the product of a

number and the unit in which the measurement is made. The distinction

in scientific contexts between number and value is important. Table 1.1

includes definitions of number, value and other important terms as they

are used in this text.

6 1 INTRODUCTION TO SCIENTIFIC DATA ANALYSIS
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1.3.1 Units

Themostwidely used systemof units in science is the SI system4which has

been adopted officially by most countries around the world. Despite

strongly favouring SI units in this text, we will also use some ‘non-SI units’

such as the minute and the degree, as these are likely to remain in wide-

spread use in science for the foreseeable future.

The origins of the SI system can be traced to pioneering work done

on units in France in the late eighteenth century. In 1960 the name ‘SI

system’ was adopted and at that time it consisted of six fundamental or

‘base’ units. Since 1960 the system has been added to and refined and

remains constantly under review. From time to time suggestions aremade

regarding how the definition of a unit may be improved. If this allows for

easier ormore accurate realisationof theunit as a standard (permitting, for

1.3 UNITS AND STANDARDS 7
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Table 1.1.Definitions of commonly used terms in data analysis.

Term Definition

Quantity An attribute or property of a body, phenomenon or

material. Examples of quantities are: the temperature,

mass or electrical capacitance of a body; the time elapsed

between two events such as starting and stopping a stop

watch; and the resistivity of a metal.

Unit An amount of a quantity, suitably defined and agreed

internationally, against which some other amount of the

same quantity may be compared. As examples, the kelvin is

a unit of temperature, the second is a unit of time and the

ohm-metre is a unit of resistivity.

Value The product of a number and a unit. As examples, 273 K is

a value of temperature, 0.015 s is a value of time interval

and 1.7�10�8 �·m is a value of resistivity.

Measurement A process by which a value of a quantity is determined. For

example, the measurement of water temperature using an

alcohol-in-glass thermometer entails immersing a

thermometer in the water followed by estimating the

position of the top of a narrow column of alcohol against

an adjacent scale.

Data Values obtained through measurement or observation.



example, improvements in instrument calibration), then appropriate

modifications are made to the definition of the unit. Currently the SI

system consists of 7 base units as defined in table 1.2.

Other quantities may be expressed in terms of the base units. For

example, energy can be expressed in units kg·m2·s�2 and electric potential

difference in units kg·m2·s�3·A�1. The cumbersome nature of units

expressed in this manner is such that other, so called derived, units are

introducedwhich are formed fromproducts of the base units. Some famil-

8 1 INTRODUCTION TO SCIENTIFIC DATA ANALYSIS

Table 1.2. SI base units, symbols and definitions.

Quantity Unit Symbol Definition

Mass kilogram kg The kilogram is equal to the mass of the

international prototype of the kilogram. (The

prototype kilogram is made from an alloy of

platinum and iridium and is kept under very

carefully controlled environmental conditions

near Paris.)

Length metre m The metre is the length of the path travelled by

light in a vacuum during a time interval of

of a second.

Time second s The second is the duration of 9 192 631 770

periods of the radiation corresponding to the

transition between the two hyperfine levels of

the ground state of the caesium 133 atom.

Thermodynamic kelvin K The kelvin is the fraction of the

temperature thermodynamic temperature of the triple point

of water.

Electric current ampere A The ampere is that current which, if maintained

between two straight parallel conductors of

infinite length, of negligible cross-section and

placed 1 metre apart in a vacuum, would

produce between these conductors a force of

2�10�7 newton per metre of length.

Luminous candela cd The candela is the luminous intensity, in a given

intensity direction, of a source that emits monochromatic

radiation of frequency 540�1014 hertz and that

has a radiant intensity in that direction of

watt per steradian.

Amount of mole mol The mole is the amount of substance of a system

substance which contains as many elementary entities as

there are atoms in 0.012 kilogram of carbon 12.

1
683

1
273.16

1
299 792 458



iar quantities with their units expressed in derived and base units are

shown in table 1.3.

1.3 UNITS AND STANDARDS 9

Table 1.3. Symbols and units of some common quantities.

Unit of quantity

Quantity Derived unit Symbol expressed in base units

Energy, work joule J kg·m2·s�2

Force newton N kg·m·s�2

Power watt W kg·m2·s�3

Potential difference, volt V kg·m2·s–3·A�1

electromotive force (emf)

Electrical charge coulomb C s·A

Electrical resistance ohm � kg·m2·s–3·A�2

Example 1
The farad is the SI derived unit of electrical capacitance. With the aid of table 1.3,

express the unit of capacitance in terms of the base units, given that the capacitance,

C, may be written

C� (1.1)

whereQ represents electrical charge and V represents potential difference.

ANSWER

From table 1.3, the unit of charge expressed in base units is s·A and the unit of poten-

tial difference is kg·m2·s�3·A�1. It follows that the unit of capacitance can be

expressed with the aid of equation (1.1) as

�kg�1 ·m�2 ·s4 ·A2s · A
kg ·m2 · s�3 · A�1

Q
V

Exercise A
The henry is the derived unit of electrical inductance in the SI system of units.With

the aid of table 1.3, express the unit of inductance in terms of the base units, given

the relationship

E��L (1.2)

where E represents emf, L represents inductance, I represents electric current and t

represents time.

dI
dt



1.3.2 Standards

How do the definitions of the SI units in table 1.2 relate to measurements

made in a laboratory? For an instrument tomeasure a quantity in SI units,

the definitions need to be made ‘tangible’ so that an example or standard

of the unit ismade available. Onlywhen the definition is realised as a prac-

tical and maintainable standard can values obtained by an instrument

designed to measure the quantity be compared against that standard. If

there is a difference between the standard and the value indicated by the

instrument, then the instrument is adjusted or calibrated so that the differ-

ence is minimised.

Accurate standards based on the definitions of some of the units

appearing in table 1.2 are realised in specialist laboratories. For example, a

clock based on the properties of caesium atoms can reproduce the second

to high accuracy.5 By comparison, creating an accurate standard of

the ampere based directly on the definition of the ampere appearing in

table 1.2 is much more difficult. In this case it is common for laboratories

to maintain standards of related derived SI units such as the volt and the

ohm, which can be implemented to very high accuracy.

Most countries have a ‘national standards laboratory’ which main-

tains the most accurate standards achievable, referred to as primary stan-

dards. From time to time the national laboratory compares those

standards with other primary standards held in laboratories around the

world. In addition, a national laboratory creates and calibrates secondary

standards by reference to the primary standard. Such secondary standards

are found in some government, industrial and university laboratories.

Secondary standards in turn are used to calibrate and maintain working

standards and eventually a working standardmay be used to calibrate (for

example) a hand held voltmeter used in an experiment. If the calibration

process is properly documented, it is possible to trace the calibration of an

instrument back to the primary standard.6 ‘Traceability’ is very important

in some situations, particularly when the ‘correctness’ of a value indicated

by an instrument is in dispute.

1.3.3 Prefixes and scientific notation

Values obtained through experiment are often much larger or much

smaller than the base (or derived) SI unit in which the value is expressed.

10 1 INTRODUCTION TO SCIENTIFIC DATA ANALYSIS

5 See appendix 2 of The International System of Units (English translation) 7th

Edition, 1997, published by the Bureau International des Poids et Mesures (BIPM).
6 See Morris (1997), chapter 3.



In such situations there are twowidely usedmethods bywhich the value of

the quantity may be specified. The first is to choose a multiple of the unit

and indicate thatmultiple by assigning a prefix to the unit. So, for example,

we might express the value of the capacitance of a capacitor as 47 �F. The

symbol � stands for the prefix ‘micro’ which represents a factor of 10�6. A

benefit of expressing a value in this way is the conciseness of the represen-

tation. A disadvantage is that many prefixes are required in order to span

the orders of magnitude of values that may be encountered in experi-

ments. As a result, several unfamiliar prefixes exist. For example, the size of

the electrical charge carried by an electron is about 160 zC. Only dedicated

students of the SI systemwould immediately recognise z as the symbol for

the prefix ‘zepto’ which represents the factor 10�21. Table 1.4 includes the

prefixes currently used in the SI system.The prefixes shown in bold are the

most commonly used.

Another way of expressing the value of a quantity is to give the

number that precedes the unit in scientific notation. To express any

number in scientific notation, we separate the first non-zero digit from the

second digit by a decimal point, so for example, the number 1200 becomes

1.200. So that the number remains unchanged we must multiply 1.200 by

103 so that 1200 is written as 1.200�103. Scientific notation is preferred for

very large or very small numbers. For example, the size of the charge

carried by the electron is written as 1.60�10�19 C. Though any value may

be expressed using scientific notation, we should avoid taking this

approach to extremes. For example, suppose the mass of a body is 1.2 kg.

This could be written as 1.2�100 kg, but this is possibly going too far.
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Table 1.4. Prefixes used with the SI system of units.

Factor Prefix Symbol factor Prefix Symbol

10�24 yocto y 101 deka da

10�21 zepto z 102 hecto h

10�18 atto a 103 kilo k

10�15 femto f 106 mega M

10�12 pico p 109 giga G

10�9 nano n 1012 tera T

10�6 micro � 1015 peta P

10�3 milli m 1018 exa E

10�2 centi c 1021 zetta Z

10�1 deci d 1024 yotta Y



1.3.4 Significant figures

In a few situations, a value obtained in an experiment can be exact. For

example, in an experiment to determine the wavelength of light using

Newton’s rings,7 the number of rings can be counted exactly. By contrast,

the temperature of an object cannot be known exactly and so we must be

careful when we interpret values of temperature. Presented with the state-

ment that ‘the temperature of the water bath was 21 °C ’ it is unreasonable

to infer that the temperature was 21.0000000°C. It is more likely that the

temperature of the water was closer to 21°C than it was to either 20°C or

22°C. By writing the temperature as 21°C, the implication is that the value

of temperature obtained by a singlemeasurement is known to two figures,

often referred to as two significant figures.

Inferring how many figures are significant simply by the way a

number is written can sometimes be difficult. If we are told that the mass

of a body is 1200 kg, how many figures are significant? If the instrument

measures mass to the nearest 100 kg, then the ‘real’ mass lies between

1150 kg and 1250 kg, so in fact only the first two figures are significant. On

12 1 INTRODUCTION TO SCIENTIFIC DATA ANALYSIS

7 See Smith and Thomson (1988).

Example 2
Rewrite the following values using: (a) commonly used prefixes and (b) scientific

notation:

(i) 0.012 s; (ii) 601 A; (iii) 0.00064 J.

ANSWER

(i) 12 ms or 1.2�10�2 s; (ii) 0.601 kA or 6.01�102 A; (iii) 0.64 mJ or 6.4�10�4 J.

Exercise B
1. Rewrite the following values using prefixes:

(i) 1.38�10�20 J in zeptojoules; (ii) 3.6�10�7s in microseconds; (iii) 43258W in

kilowatts; (iv) 7.8�108 m/s in megametres per second.

2. Rewrite the following values using scientific notation:

(i) 0.650 nm in metres; (ii) 37 pC in coulombs; (iii) 1915 kW in watts; (iv) 125 �s in

seconds.



the other hand, if themeasuring instrument is capable ofmeasuring to the

nearest kilogram, then all four figures are significant.The ambiguity can be

eliminated if we express the value using scientific notation. If the mass of

the body,m, is correct to two significant figures we would write

m�1.2�103 kg

When a value is written using scientific notation, every figure preceding

the multiplication sign is regarded as significant. If the mass is correct to

four significant figures then we write

m�1.200�103 kg

Though it is possible to infer something about a value by the way it is

written, it is better to state explicitly the uncertainty in a value. For

example, we might write

m�(1200�12) kg

where 12 kg is the uncertainty in the value of the mass. Estimating uncer-

tainty is considered in chapter 5.

It may be required to round a value to a specified number of signifi-

cant figures. For example, we might want to round 1.752�10�7 m to three

significant figures. To do this, we consider the fourth significant figure

(which in this example is a ‘2’). If this figure is equal to or greater than 5, we

increase the third significant figure by 1, otherwise we leave the figure

unchanged. So, for example, 1.752�10�7mbecomes 1.75�10�7m to three

significant figures. Using the same convention, a mass of 3.257�103 kg

becomes 3.3�103 kg to two significant figures.
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Exercise C
1. Howmany significant figures are implied by the way each of the following values

is written:

(i) 1.72m; (ii) 0.00130mol/cm3; (iii) 6500 kg; (iv) 1.701�10�3 V; (v) 100°C;

(vi) 100.0 °C?

2. Express the following values using scientific notation to two, three and four sig-

nificant figures:

(i) 775710 m/s2; (ii) 0.001266 s; (iii) –105.4°C; (iv) 14000 nH in henrys; (v) 12.400 kJ

in joules; (vi) 101.56 nm in metres



1.4 Picturing experimental data

The ability possessed by humans to recognise patterns and trends is so

good that it makes sense to exploit this talent when analysing experimen-

tal data. Though a table of experimental values may contain the same

information as appears on a graph, it is very difficult to extract useful infor-

mation from a table ‘by eye’. To appreciate the ‘big picture’ it is helpful to

devise ways of graphically representing the values.

When values are obtained through repeat measurements of a single

quantity, then the histogram is used extensively to display data. When a

single quantity or variable is being considered, the data obtained are often

referred to as ‘univariate’ data. By contrast, if an experiment involves inves-

tigating the relationship between two quantities, then the x–y graph is a

preferred way of displaying the data (such data are often referred to as

‘bivariate’ data).

1.4.1 Histograms

The histogram is a pictorial representation of data which is regularly used

to reveal the scatter or distribution of values obtained frommeasurements

of a single quantity. For example, wemightmeasure the diameter of a wire

many times in order to know something of the variation of the diameter

along the length of the wire. A table is a convenient and compact way to

present thenumerical information.However,weareusually happy (at least

in the early stages of analysis) to forego knowledge of individual values in

the table for a broader overview of all the data. This should help indicate

whether some values are much more common than others and whether

there are any values that appear to differ greatly from the others. These

‘extreme’ values are usually termed outliers.

To illustrate the histogram, let us consider data gathered in a radio-

active decay experiment. In an experiment to study the emission of beta

particles from a strontium 90 source, measurements were made of the

number of particles emitted from the source over 100 consecutive

1 minute periods. The data gathered are shown in table 1.5. Inspection

of the table indicates that all the values lie between about 1100 and 1400,

but little else can be discerned. Do some values occur more often than

others and if so which values? A good starting point for establishing the

distribution of the data is to count the number of values (referred to as

the frequency) which occur in predetermined intervals of equal width.

The next step is to plot a graph consisting of frequency on the vertical
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axis versus interval on the horizontal axis. In doing this we create a his-

togram.

Table 1.6, created using the data in table 1.5, shows the number of

values which occur in consecutive intervals of 20 counts beginning with

the interval 1160 to 1180 counts and extending to the interval 1360 to 1380

counts. This table is referred to as a grouped frequency distribution. The

distribution of counts is shown in figure 1.1.We note that most values are

clustered between 1220 and 1280 and that the distribution is almost sym-

metric,with the suggestionof a longer ‘tail’ at larger counts.Othermethods

by which univariate data can be displayed include stem and leaf plots and
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Table 1.5. Counts from a radioactivity experiment.

1265 1196 1277 1320 1248 1245 1271 1233 1231 1207

1240 1184 1247 1343 1311 1237 1255 1236 1197 1247

1301 1199 1244 1176 1223 1199 1211 1249 1257 1254

1264 1204 1199 1268 1290 1179 1168 1263 1270 1257

1265 1186 1326 1223 1231 1275 1265 1236 1241 1224

1255 1266 1223 1233 1265 1244 1237 1230 1258 1257

1252 1253 1246 1238 1207 1234 1261 1223 1234 1289

1216 1211 1362 1245 1265 1296 1260 1222 1199 1255

1227 1283 1258 1199 1296 1224 1243 1229 1187 1325

1235 1301 1272 1233 1327 1220 1255 1275 1289 1248

Table 1.6. Grouped frequency

distribution for data shown in table 1.5.

Interval (counts) Frequency

1160 < x �1180 3

1180 < x�1200 10

1200 < x�1220 7

1220 < x�1240 24

1240 < x�1260 25

1260 < x�1280 16

1280 < x�1300 6

1300 < x�1320 4

1320 < x�1340 3

1340 < x�1360 1

1360 < x�1380 1



pie charts,8 though these tend to be used less often than the histogram in

the physical sciences.

There are no ‘hard and fast’ rules about choosing the width of inter-

vals for a histogram, but a good histogram:

• is easy to construct, so intervals are chosen to reduce the risk of mis-

takes when preparing a grouped frequency distribution. For example,

an interval between 1160 and 1180 is preferable to one from (say) 1158

to 1178.

• reveals the distribution of the data clearly. If too many intervals are

chosen then the number of values in each interval is small and the his-

togram appears ‘flat’ and featureless. At the other extreme, if the histo-

gram consists of only two or three intervals, then all the values will lie

in those intervals and the shape of the histogram reveals little.

In choosing the total number of intervals, N, a useful rule of thumb is to

calculateN using

N� (1.3)

where n is the number of values. Once N has been rounded to a whole

number, the interval width,w, can be calculated using

w� (1.4)
range
N

�n
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8 See Blaisdell (1998) for details of alternate methods of displaying univariate data.

Figure 1.1.Histogram showing the frequency of counts in a radioactivity experiment.
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where range is defined as

range�maximum value – minimum value (1.5)

We should err on the side of selecting ‘easy to work with’ intervals, rather

than holding rigidly to the value of w given by equation (1.4). If, for

example,wwere found using equation (1.4) to be 13.357, then a value ofw

of 10 or 15 should be considered, as this would make tallying up the

number of values in each interval less prone to mistakes.

If there aremany values then plotting a histogram‘by hand’ becomes

tedious. Happily, there are many computer based analysis packages, such

as spreadsheets (discussed in chapter 2), which reduce the effort that

would otherwise be required.

1.4.2 Relationships and the x–y graph

Apreoccupation ofmany scientists is to discover, and account for, the rela-

tionship between quantities. This fairly innocent statement conceals the

fact that a complex and sometimes unpredictable interplay between

experiment and theory is required before any relationship can be said to

be accounted for in a quantitative as well as qualitativemanner. Examples

of relationships that may be studied through experiment are:

• the intensity of light emitted from a light emitting diode (LED) as the

temperature of the LED is reduced;
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Table 1.7. Values of 52 weights.

Mass (g)

50.42 50.09 49.98 50.16 50.10 50.18 50.12 49.95 50.05

50.14 50.07 50.15 50.06 50.22 49.90 50.09 50.18 50.04

50.02 49.81 50.10 50.16 50.06 50.14 50.20 50.06 49.84

50.07 50.08 50.19 50.05 50.13 50.13 50.08 50.05 50.01

49.84 50.11 50.11 50.05 50.15 50.17 50.05 50.12 50.30

49.97 50.05 50.09 50.17 50.08 50.21 50.21

Exercise D
Table 1.7 shows the values of 52 ‘weights’ of nominal mass 50 g used in an under-

graduate laboratory. Using the values in table 1.7, construct

(i) a grouped frequency distribution;

(ii) a histogram.



• the power output of a solar cell as the angle of orientation of the cell

with respect to the sun is altered;

• the change in electrical resistance of a humidity sensor as the humid-

ity is varied;

• the variation of voltage across a conducting ceramic as the current

through it changes;

• the decrease in the acceleration caused by gravity with depth below

the earth’s surface.

Let us consider the last example in a littlemore detail, inwhich the free-fall

acceleration caused by gravity varies with depth below the earth’s surface.

Based upon considerations of the gravitational attraction between bodies,

it is possible to predict a relationship between acceleration and depth

when a body has uniform density. By gathering ‘real data’ this prediction

can be examined. Conflict between theory and experiment might suggest

modifications are required to the theory or perhaps indicate that some

‘real’ anomaly, such as the existence of large deposits of gold close to the

site of the measurements, has influenced the values of acceleration.

As the acceleration in the example above depends on depth, we refer

to the acceleration as the dependent variable, and the depth as the inde-

pendent variable. (The independent and dependent variables are some-

times referred to as the predictor and response variables respectively.) A

convenient way to record values of the dependent and independent vari-

ables is to construct a table.Thoughconcise, a table of data is fairly dull and

cannot assist efficiently with the identification of trends or patterns in

data. A revealing and very popular way to display bivariate data is to plot

an x–y graph (sometimes referred to as a scatter graph). The ‘x’ and the ‘y’

are the symbols used to identify the horizontal and vertical axes respec-

tively of a Cartesian co-ordinate system.9

If properly prepared, a graph is a potent summary ofmany aspects of

an experiment.10 It can reveal:

• the quantities being investigated;

• the number and range of values obtained;

• gaps in the measurements;

• a trend between the x and y quantities;

• values that conflict with the trend shown by the majority of the data;

• the extent of uncertainty in the values (sometimes indicated by ‘error

bars’).
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9 The horizontal and vertical axes are sometimes referred to as the abscissa and

ordinate respectively.
10 Cleveland (1994) discusses what makes ‘good practice’ in graph plotting.



If a graph is well constructed, this qualitative information can be

‘absorbed’ in a few seconds. To construct a good graph we should ensure

that:

• a caption describing the graph is included;

• axes are clearly labelled (and the label includes the unit of measure-

ment);

• the scales for each axis are chosen so that plotting, if done by hand, is

made easy so that values can be read easily from the graph;

• the graph is large enough to allow for the efficient extraction of infor-

mation ‘by eye’;

• plotted values are clearly marked.

An x–y graph is shown in figure 1.2 constructed from data gathered in an

experiment to establish the cooling capabilities of a thermoelectric cooler

(TEC).11 Attached to each point in figure 1.2 are lines which extend above

and below the point. These lines are generally referred to as error bars and

in this example are used to indicate the uncertainty in the values of tem-

perature.12 The ‘y’ error bars attached to the points in figure 1.2 indicate

that theuncertainty in the temperature values is about 2°C. As ‘x’ error bars

are absentwe infer that the uncertainty in values of time is too small to plot

on this scale.
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11 A thermoelectric cooler is a device containing junctions of semiconductor

material.When a current passes through the device, some of the junctions expel

thermal energy (causing a temperature rise) while others absorb thermal energy

(causing a temperature drop).
12 Chapter 5 considers uncertainties in detail.

Figure 1.2. Temperature versus time for a thermoelectric cooler.
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If an x–y graph consists of many points, a convenient way to plot

those points and attach error bars is to use a computer based spreadsheet

(see section 2.7.1).

1.4.3 Logarithmic scales

The scales on the graph in figure 1.2 are linear. That is, each division on the

x axis corresponds to a time interval of 200 s and each division on the y axis

corresponds to a temperature interval of 5°C. In some situations important

information can be obscured if linear scales are employed. As an example,

consider the current–voltage relationship for a LED as shown in figure 1.3.

It is difficult to determine the relationship between current and voltage for

the LED in figure 1.3 for values of voltage below about 2 V. As the current

data span several orders of magnitude, the distribution of values can be

more clearly discerned by replacing the linear y scale in figure 1.3 by a log-

arithmic scale. Though graph paper is available inwhich the scales are log-

arithmic, many computer based graph plotting routines, including those

supplied with spreadsheet packages, allow easy conversion of the y or x or

both axes from linear to logarithmic scales. Figure 1.4 shows the data from

figure 1.3 replotted using a logarithmic y scale. As one of the axes remains

linear, this type of graph is sometimes referred to as semi-logarithmic.
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Figure 1.3.Variation of current with voltage for a LED.
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Exercise E
The variation of current through a Schottky diode is measured as the temperature of

the diode increases. Table 1.8 shows the data gathered in the experiment. Choosing

appropriate scales, plot a graphof current versus temperature for the Schottky diode.



1.5 Key numbers summarise experimental data

A significant challenge facing all experimenters is to find ways to express

data in a concise fashionwithout obscuring important features. The histo-

gram can give us the ‘big picture’ regarding the distribution of values and

can alert us to important features such as lack of symmetry in the distribu-

tion, or the existence of outliers. This information, though very important,

is essentially qualitative. What quantitative measures can we use to sum-

marise all the data?
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Figure 1.4. Current versus voltage using semi-logarithmic scales on the x and y axes.
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Table 1.8. Variation of current

with temperature for a Schottky

diode.

Temperature (K) Current (A)

297 2.86�10�9

317 1.72�10�8

336 6.55�10�8

353 2.15�10�7

377 1.19�10�6

397 3.22�10�6

422 1.29�10�5

436 2.45�10�5

467 9.97�10�5

475 1.41�10�4




